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Disclaimer #1:  
Based on my (very) limited knowledge of neutrino experiments, I will try to draw some parallels 

between what we do at LHC and what I think are important to neutrino experiments.   
Assumptions may be misguided.

Disclaimer #2:  
I’ll cover a lot of different topics, some only superficially due to time and lack of expert knowledge, 
but also to give you a broad view of what people are thinking about.  There are lots of experts, many 

who sit on the 10/11th floors.  Hopefully this can be the start of interesting dialogues.
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the task of jet substructure

rise of the machines

the fast and the furious
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the task of jet substructure
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LHC era in a nutshell:
More energy

More luminosity

CMS & ATLAS:
A very broad and significant 

physics program
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CHARGED  
HADRONS
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IDENTIFYING BOOSTED JETS
•pT,Y,φ + tracking 

•mass 
•4-vector sum of jet constituents 
•highly sensitive to soft QCD and pileup; grooming can be used to 
mitigate these dependencies 

•substructure 
•several classes: declustering/reclustering, generalized jet shapes and 
energy flow, statistical interpretation (Qjets), jet charge 

•algorithms 
•some combination of cuts on mass, shapes, tracking 
•most typical in top tagging
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W

q
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may be radiated within the reach of the jet definition and then generate a mass for the
jet (assuming a 4-vector-addition recombination scheme). The aim of this section is to
give some simple analytical understanding of the effect of perturbative radiation on a jet’s
transverse momentum and mass — rules of thumb — as well as references to the literature
for more detailed analyses.

For the reader who is interested principally in the results, the two main ones can be
summarised as follows. For small jet radii, R ≪ 1, the average fractional difference between
a jet’s transverse momentum and that of the original parton is

⟨pt,jet − pt,parton⟩pert
pt

≃ quarks: −0.43
gluons: −1.02

}

× αs ln
1

R
+O (αs) . (25)

where the O (αs) term depends both on the jet algorithm and the global environment in
which the parton is to be found (e.g. colour connections to other partons) and is often
ill-defined because of the ambiguities in talking about partons in the first place. Ignoring
these important caveats, the above result implies that an R = 0.4 quark (gluon) jet has
about 5% (11%) less momentum on average that the original parton (for αs = 0.12).

The second result is that the average squared jet mass for all non-cone algorithms is

⟨M2⟩ ≃ quarks: 0.16
gluons: 0.37

}

× αsp
2
tR

2 . (26)

For both the pt loss and the squared jet mass, SISCone results are similar to kt, anti-kt
and C/A results when RSSICone ≃ 0.75Rkt .

4.2.1 Jet pt

In many uses of jets, one needs to know how a jet’s energy (or pt) relates to the underlying
hard scale of the process — for example to the mass of a decaying heavy particle (top
quark, Higgs boson, new particle), or to the momentum fraction carried by a scattered
parton in an inclusive jet cross section.

One approach to this is to take a Monte Carlo event generator, let it shower a parton
from some source and then compare the jet’s pt to that of the parton. This often gives a
reasonable estimate of what’s happened, even if the Monte Carlo basically acts as a black
box, and brings a somewhat arbitrary definition of what is meant by the initial “parton”
(or of the mass of the top quark).

Another approach is to take a program for carrying out NLO predictions, like MCFM [44]
or NLOJET++ [45], and for example determine the relation between the jet pt-spectrum
and the parton distribution functions. NLO calculations are perhaps even blacker boxes
than Monte Carlo generators, on the other hand they do have the advantage of giving
predictions of well-defined precision; however, one loses all relation to the intermediate
(ill-defined) “parton” (this holds also for tools like MC@NLO [49] and POWHEG [50]).

44

mass is the most useful jet shape observable 
at parton level, these are pretty easy to tell apart 

But jet mass is a perturbative quantity 
And it’s tough to model!
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�58N-subjettiness
N-subjettiness
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calculations and resummation techniques (see, e.g. recent work in Ref. [29, 30]) compared

to algorithmic methods for studying substructure. Finally, N -subjettiness gives favorable

efficiency/rejection curves compared to other jet substructure methods. While a detailed

comparison to other methods is beyond the scope of this work, we are encouraged by these

preliminary results.

The remainder of this paper is organized as follows. In Sec. 2, we define N -subjettiness

and discuss some of its properties. We present tagging efficiency studies in Sec. 3, where we

use N -subjettiness to identify individual hadronic W bosons and top quarks, and compare

our method against the YSplitter technique [2, 3, 4] and the Johns Hopkins Top Tagger [6].

We then apply N -subjettiness in Sec. 4 to reconstruct hypothetical heavy resonances de-

caying to pairs of boosted objects. Our conclusions follow in Sec. 5, and further information

appears in the appendices.

2. Boosted Objects and N-subjettiness

Boosted hadronic objects have a fundamentally different energy pattern than QCD jets

of comparable invariant mass. For concreteness, we will consider the case of a boosted

W boson as shown in Fig. 1, though a similar discussion holds for boosted top quarks or

new physics objects. Since the W decays to two quarks, a single jet containing a boosted

W boson should be composed of two distinct—but not necessarily easily resolved—hard

subjets with a combined invariant mass of around 80 GeV. A boosted QCD jet with an

invariant mass of 80 GeV usually originates from a single hard parton and acquires mass

through large angle soft splittings. We want to exploit this difference in expected energy

flow to differentiate between these two types of jets by “counting” the number of hard lobes

of energy within a jet.

2.1 Introducing N-subjettiness

We start by defining an inclusive jet shape called “N -subjettiness” and denoted by τN .

First, one reconstructs a candidate W jet using some jet algorithm. Then, one identifies

N candidate subjets using a procedure to be specified in Sec. 2.2. With these candidate

subjets in hand, τN is calculated via

τN =
1

d0

∑

k

pT,k min {∆R1,k,∆R2,k, · · · ,∆RN,k} . (2.1)

Here, k runs over the constituent particles in a given jet, pT,k are their transverse momenta,

and ∆RJ,k =
√

(∆η)2 + (∆φ)2 is the distance in the rapidity-azimuth plane between a

candidate subjet J and a constituent particle k. The normalization factor d0 is taken as

d0 =
∑

k

pT,kR0, (2.2)

where R0 is the characteristic jet radius used in the original jet clustering algorithm.

It is straightforward to see that τN quantifies how N -subjetty a particular jet is, or

in other words, to what degree it can be regarded as a jet composed of N subjets. Jets
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Figure 4: Left: Decay sequences in (a) tt and (c) dijet QCD events. Right: Event displays for
(b) top jets and (d) QCD jets with invariant mass near mtop. The labeling is similar to Fig. 1,
though here we take R = 0.8, and the cells are colored according to how the jet is divided into
three candidate subjets. The open square indicates the total jet direction, the open circles indicate
the two subjet directions, and the crosses indicate the three subjet directions. The discriminating
variable τ3/τ2 measures the relative alignment of the jet energy along the crosses compared to the
open circles.

a b jet and a W boson, and if the W boson decays hadronically into two quarks, the top jet

will have three lobes of energy. Thus, instead of τ2/τ1, one expects τ3/τ2 to be an effective

discriminating variable for top jets. This is indeed the case, as sketched in Figs. 4, 5, 6,

and 7.
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☐ = τ1

◯ = τ2

 × = τ3

generalizing subjets...
N-subjettiness: a measure 
of how consistent a jet is 
with having N subjets, τN

k, sum over particles in the jet
N subjet axes for computing τN
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Ratios of τN are traditionally 
used for discriminating signal 

from background

“Prongy-ness” 
N-subjettiness: a measure of how consistent a jet is with having N subjets, τN

Ratios are typically used:
τ2/τ1 for separating W jets from quark and gluon jets
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Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely
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Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely
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Tons of variables to measure jet radiation profiles for different tasks

Could you use variables like this to separate DIS,Res,QE? 
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Some taggers and jet-substructure observables

Jet Declustering
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Event Deconstruction

Jet Charge

Combined taggers

Graphic from Gavin Salam 
circa 2012

added by N.T. in 2014 
(too lazy to update)
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Some taggers and jet-substructure observables
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Jet substructure is an interesting field because it attracted a lot 
of interest from theory — SCET vs. perturbative QCD.   

This resulted in an interesting blend of tagging algorithms and 
observables calculable by theory.   

Very interesting from an “information theory” point-of-view.  
A lot of physical underpinning and ways to think about the 

information content of a jet.   

We’ll come back to this when discussing ML,  
but you can start to ask: 

What is the machine learning? 



THE TASK OF JET SUBSTRUCTURE

Identify interesting highly-boosted, highly energetic objects 
Complicated correlated multi-body final states 

A broad range of very interesting physics! 
SM, Higgs, Exotics, Susy,… 

Imperfect MC modeling 
Strategies for background, signal, and  
related systematic uncertainty estimation? 

New particles in substructure?   
Generic features  
Training away new physics? 
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Figure 3: Example processes of interesting physics signatures that would benefit from jet substructure
algorithms in the hardware trigger

Input generation and features

Events samples are generated at
p

s = 13 TeV for comparison to LHC performance. Parton-level
(unshowered quark) W+W�, Z Z , tt̄, qq̄, and gg events are first produced at leading-order using
MadGraph5_aMC_at_NLO [30] (version 2.3.1) with the NNPDF23LO1 parton distribution functions
(PDFs) [31]. In order to focus on a relatively narrow kinematic range, the transverse momenta
of the partons and undecayed gauge bosons are generated in window with energy spread given by
�pT/pT = 0.01, centered at 1 TeV. These parton-level events are then decayed and showered in
P�����8 [32] (version 8.212) with the Monash 2013 tune [33], including the contribution from the
underlying event. For each final state, 200,000 events are generated.

We implement a variety of jet recombination algorithms and substructure tools via the F���-
J�� 3.1.3 and F���J�� ������� 1.027 packages [34, 35]. As a baseline, all jets are clustered using the
anti-kT algorithm [36], with a distance parameter of R = 0.8. Even though the parton-level pT distri-
bution is narrow, the jet pT spectrum is significantly broadened by kinematic recoil from the parton
shower and energy migration in and out of the jet cone. We apply a cut on the reconstructed jet pT to
remove extreme events from the analysis, vetoing those outside a window of 0.8 TeV < pT < 1.6 TeV
for the pT = 1 TeV bin.

The jet substructure community has developed a wide variety of observables to identify the origin
of a jet based on the structure of its radiation pattern. The Higgs boson is not included in this study
as its mass and substructure are quite similar to W and Z bosons, though of course all the lessons we
learn here are of great interest to preserving interesting Higgs signatures. The goal of this study is not
to perform an exhaustive jet substructure catalog or detailed comparisons of various machine learning
algorithms, but instead to examine the implementation of various network architectures popular in jet
substructure in FPGAs. By combining several observables together into a multivariate discriminant,
one can achieve excellent tagging identification for each pairwise discrimination task, and we do not
expect the qualitative lessons from this study to change substantially by adding more jet observables.

– 7 –



STANDARD CANDLES AND CORRELATIONS

How do we perform measurements and searches on things that 
are not well-modeled? 

No one may admit it now, but in the early days of jet substructure people thought you 
would never be able to understand the structure of QCD well-enough to employ these 
methods 

Signals: find standard candles in the standard model and 
extrapolate with generous modeling uncertainties 

Backgrounds: build orthogonal signal-depleted, background-rich 
control regions to study and estimate background; requires a 
good understand of correlations between observables 

Systematics come from standard candle, extrapolation 
uncertainties, and sideband fits

 19



STANDARD CANDLES

How do we perform 
measurements on things that are 
not well-modeled? 

Signals: find standard candles in 
the standard model and 
extrapolate with generous 
modeling uncertainties 

Top quarks provide both W and 
top jet standard candles.  
More subtle: using gluon → bbar 
as a standard candle for 
understanding H(bb)  

 20
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Figure 11: Pruned jet mass distribution in the tt control sample that (left column) pass and
(right column) fail the t2/t1 < 0.5 selection for the (upper row) muon, and for the (lower row)
electron channels. The result of the fit to data and simulation are shown, respectively, by the
solid and long-dashed line and the background components of the fit are shown as dashed-
dotted and short-dashed line.
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DECORRELATION IS AN OLD IDEA  22

A familiar example: 
ABCD method 

If observables x and y are 
uncorrelated, then  
D = C * A / B

A

B C

D
y

x
especially nice when background not well-modeled 

“data-driven” 
Many variants: ABCD, ABCDEF, Alphabet, alpha, rhalphabet…

signal
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Figure 5: Soft drop jet mass distribution for the different pT categories of the fit from 500-
1000 GeV. Data are shown as the black points. The QCD background prediction, including
uncertainties, is shown in the gray boxes. Contributions from the W, Z, and a hypothetical Z0

signal at a mass of 135 GeV are indicated as well. In the bottom panel, the ratio of the data to
the background prediction, including uncertainties, is shown. The scale on the x-axis differs
for each pT category due to the kinematic selection on r.

Where is the W peak?
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Figure 5: Soft drop jet mass distribution for the different pT categories of the fit from 500-
1000 GeV. Data are shown as the black points. The QCD background prediction, including
uncertainties, is shown in the gray boxes. Contributions from the W, Z, and a hypothetical Z0

signal at a mass of 135 GeV are indicated as well. In the bottom panel, the ratio of the data to
the background prediction, including uncertainties, is shown. The scale on the x-axis differs
for each pT category due to the kinematic selection on r.

Where is the W peak?

After a cut on Variable X After a cut on Variable XDDT
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Figure 5: Soft drop jet mass distribution for the different pT categories of the fit from 500-
1000 GeV. Data are shown as the black points. The QCD background prediction, including
uncertainties, is shown in the gray boxes. Contributions from the W, Z, and a hypothetical Z0

signal at a mass of 135 GeV are indicated as well. In the bottom panel, the ratio of the data to
the background prediction, including uncertainties, is shown. The scale on the x-axis differs
for each pT category due to the kinematic selection on r.

Where is the W peak?

Decorrelation 
requires a deep 

understanding of 
QCD mass 

Looking for a Z’, a 
generic bump on this 

mass spectrum
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ρDDT (MASS-LIKE VARIABLE)

N2DDT

cut
SIGNAL REGION

CONTROL REGION

TRANSFER FACTOR

NPASS/NFAIL

6 5 Systematics uncertainties

orders of r and pT,

F (r, pT) = eQCD(1 + a01 pT + a02 p
2
T + · · · (6)

+ (a10 + a11 pT + a12 p
2
T + · · · )r

+ (a20 + a21 pT + a22 p
2
T + · · · )r2 + · · · ,

where eQCD is the pass-to-fail ratio in QCD simulation (i.e. 0.05/0.95) and ak` are the polyno-
mial coefficients. The coefficients are determined in a simultaneous fit of the failing and passing
regions in the same fit being used for the signal extraction. The fit includes subdominant non-
multijet backgrounds (W,Z,tt), discussed in more detail below, as well as the Z’ signal and is
performed over 5 pT bins: {500,600,700,800,900,1000}GeV. A unique fit is performed for each
Z’ mass hypothesis. The number of required coefficients in the fit is determined with a Fisher
F-Test on data [63] by iteratively adding polynomial orders, and is found to be fourth order in
r and third order in pT.

N21,DDT

pT

ρ=ln(mSD2/pT2)

“fail”

“pass”

N21,DDT = 0

Figure 3: A schematic of the background estimation method. The pass-to-fail ratio, translating
from failing to passing regions after applying a N

1,DDT
2 selection, is extracted by performing a

two-dimensional fit in (r, pT) space.

Contributions from non-QCD (W,Z,tt) backgrounds and potential signal are properly accounted
for in the fit in both the failing and passing regions. Subdominant backgrounds arising from
resonant SM processes (W/Z +jets) are estimated from simulation, including corrections to the
shape and normalization from higher order NLO QCD and EWK effects. Additional data-to-
simulation corrections for the jet mass shapes and N

1,DDT
2 tagging efficiencies are evaluated

from a tt control region rich in merged hadronic W bosons, as further explained below.

In addition to the W/Z backgrounds, the tt background contribution is estimated from sim-
ulation with corrections from data based on a dedicated control region. This region has the
same kinematic requirements as the signal region but inverts the muon veto and requires an
additional b jet. The muon is selected using dedicated muon triggers and has pT > 100 GeV
and |h| < 2.1, while the b jet must have pT > 50 GeV. Scale factors for data-to-simulation are
computed and applied to the tt background estimated from simulation. The scale factors cor-
respond to the overall tt normalization and selection efficiency for the passing region and are
SFtt

norm = 0.75 ± 0.10 and SFtt
mis�tag = 0.83 ± 0.03, respectively.

5 Systematics uncertainties
Uncertainties on the QCD background originate from the parametric uncertainties on the trans-
fer factor fit described in Eq. 6. To validate the robustness of the fit, we perform a goodness-of-
fit test and signal injection bias tests using toy experiments and observe no significant biases.



JET SUBSTRUCTURE MINI-SUMMARY

Task: classify different type of jets based on radiation patterns 
and secondary vertex information 

Many “expert features” invented to discriminate between various 
types of jets 

Dealing with modeling challenges:  
Standard Candles give a handle on signal systematics 
Sidebands and control regions for data-driven backgrounds; requires 
a detailed understanding of feature correlations 

 28
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RISE OF THE MACHINES

An obvious thing to do: 
Put all the expert features into 
a multivariate classifier 

Observe an improvement in 
classifier performance, 
O(10-20%) increase in 
background rejection 

“Simple” machine learning, 
typically shallow networks or 
BDTs

 30

5.2 Comparison of algorithms 9

5.2 Comparison of algorithms

We compare the performance of observables used to identify W jets with the goal of establish-
ing which provides the best signal-to-background discrimination between W jets and QCD jets.
Because the pruned jet mass is the best discriminant, we examine the other variables only for
jets satisfying 60 < mjet < 100 GeV. Observables highly correlated with the pruned jet mass
will therefore show weaker additional improvement in performance.

The figure of merit for comparing different substructure observables is the background rejec-
tion efficiency as a function of signal efficiency (“receiver operating characteristic”, or the ROC
curve). Figure 3 shows the performance of the observables in the W+jet final state for jet pT
250–350 GeV. The pruned jet mass selection is applied in both the numerator and the denomi-
nator of the efficiency, and only the additional discrimination power of the other observables is
therefore shown in the figure. The performance of the t2/t1, pruned t2/t1, exclusive-kT t2/t1,
GQjet, C

b
2 , mass drop, and jet charge are compared. For the jet charge ROC curve, a positively

charged lepton is required in the event selection, and therefore the discrimination power of
negatively charged W jets against QCD jets is compared. We find that the best performant vari-
able is t2/t1 up to an efficiency of 75%. Above an efficiency of 75%, GQjet is the best variable.
The pruned t2/t1 is slightly worse than the default t2/t1. The performance of the t2/t1 with-
out optimization of the axes is worse than the t2/t1 variants with a ”one-pass” optimization.
The worst performing variables are the mass drop, C2(b = 1.7), and the jet charge. We also
find that the discrimination power between W

+ jets and W
� jets varies by less than 10% for

values of the k parameter in Eq. 4 between 0.3 and 1.0.
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Figure 3: Performance of several discriminants in the background-signal efficiency plane in the
low jet pT bin of 250–350 GeV in the W+jet topology. The efficiencies and mistagging rates of
the various discriminants are estimated on samples of W jets and QCD jets that satisfy a pruned
jet mass selection of 60 < mjet < 100 GeV.

In addition to the performance of individual variables, we study how their combination can
improve the separation between W and QCD jets. A multivariate optimization is performed
using the TMVA package [58]. A combination of observables is considered in a naive Bayes
classifier and in a Multilayer Perceptron (MLP) neural network discriminant. Additional ob-
servables with respect to those shown in Fig. 3 are used in an attempt to increase the discrim-
ination power. The variables used in both discriminants are the mass drop, GQjet, t2/t1, C
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Jet substructure has emerged to play a central role at the Large Hadron Collider (LHC), where it has
provided numerous innovative new ways to search for new physics and to probe the Standard Model
in extreme regions of phase space. In this article we provide a comprehensive review of state of the
art theoretical and machine learning developments in jet substructure. This article is meant both
as a pedagogical introduction, covering the key physical principles underlying the calculation of jet
substructure observables, the development of new observables, and cutting edge machine learning
techniques for jet substructure, as well as a comprehensive reference for experts. We hope that it
will prove a useful introduction to the exciting and rapidly developing field of jet substructure at
the LHC.

This constitutes the theory and machine learning sections of a review on jet substructure at the LHC
for Reviews of Modern Physics. An overview of recent experimental progress in jet substructure
will appear separately, and the complete review will be submitted to Reviews of Modern Physics.
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I. INTRODUCTION

The Large Hadron Collider (LHC) is currently the cen-
ter of attention in particle physics, providing a unique op-
portunity to probe the dynamics of the Standard Model
(SM) at the TeV scale, and to search for new physics.
One of the major new developments which has come to
play a central role at the LHC is jet substructure. Jets
are collimated sprays of particles resulting from quarks
and gluons produced at high energy; jet substructure is
a set of tools to exploit information from the radiation
pattern inside these jets. For example, jet substructure
can be used to identify boosted hadronically decaying
electroweak bosons and top quarks. Jet substructure
techniques have provided innovative advances in prob-
ing the SM, in addition to improving the sensitivity for
new physics searches. The surge of interest in jet sub-
structure at the LHC has been driven by the extended
energy reach, which has inspired new theoretical ideas
and reconstruction techniques to probe this previously
unexplored and exciting regime.

The renewed theoretical interest in jet structure has
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 
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Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.
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Figure 6: Left: ROC curves for individual physics-motivated features as well as three deep neural
network discriminants. Right: the DNNs are compared with pairwise combinations of the physics-
motivated features.
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Figure 7: ROC curves that combined the DNN outputs with physics motivated features for the
Convnet (left) and MaxOut (right) architectures.
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where mfat is the un-groomed mass of the fat jet. This is similar to standard experimental

approaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition,

we include the HEPTopTagger2 information from filtering combined with a mass drop

criterion,

{ msd,mfat,mrec, frec,�Ropt, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (MotherOfTaggers) .

(3.5)

In figure 8 we compare these two QCD-based approaches with our best neural networks.

Firstly, we see that both QCD-based BDT analyses and the two neural network setups are

close in performance. Indeed, adding HEPTopTagger information slightly improves

the SoftDrop+N -subjettiness setup, reflecting the fact that our transverse momentum

range is close to the low-boost scenario where one should rely on the better-performing

HEPTopTagger. Second, we see that the di↵erence between the two pre-processing

scenarios is in the same range as the di↵erence between the di↵erent approaches. Running

the DeepTop framework over signal samples with a 2-prong W 0 decay to two jets with

mW 0 = mt and over signal samples with a shifted value of mt we have confirmed that the

neural network setup learns both, the number of decay subjets and the mass scale.

Following up on on the observation that the neural network and the QCD-based taggers

show similar performance in tagging a boosted top decay inside a fat jet, we can check what

kind of information is used in this distinction.

Both for the DNN and for the MotherOfTaggers BDT output we can study signal-

like learned patterns in actual signal events by cutting on the output label y corresponding

to the 30% most signal like events shown on the right of figure 3. Similarly, we can

require the 30% most background like events to test if the background patterns are learned

correctly. In addition, we can compare the kinematic distributions in both cases to the

– 14 –
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QCD-Aware Recursive Neural Networks for Jet Physics

Gilles Louppe,1 Kyunghyun Cho,1 Cyril Becot,1 and Kyle Cranmer1

1
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Recent progress in applying machine learning for jet physics has been built upon an analogy
between calorimeters and images. In this work, we present a novel class of recursive neural networks
built instead upon an analogy between QCD and natural languages. In the analogy, four-momenta
are like words and the clustering history of sequential recombination jet algorithms is like the
parsing of a sentence. Our approach works directly with the four-momenta of a variable-length set
of particles, and the jet-based tree structure varies on an event-by-event basis. Our experiments
highlight the flexibility of our method for building task-specific jet embeddings and show that
recursive architectures are significantly more accurate and data e�cient than previous image-based
networks. We extend the analogy from individual jets (sentences) to full events (paragraphs), and
show for the first time an event-level classifier operating on all the stable particles produced in an
LHC event.

I. INTRODUCTION

By far the most common structures seen in collisions at
the Large Hadron Collider (LHC) are collimated sprays
of energetic hadrons referred to as ‘jets’. These jets are
produced from the fragmentation and hadronization of
quarks and gluons as described by quantum chromody-
namics (QCD). Several goals for the LHC are centered
around the treatment of jets, and there has been an enor-
mous amount of e↵ort from both the theoretical and ex-
perimental communities to develop techniques that are
able to cope with the experimental realities while main-
taining precise theoretical properties. In particular, the
communities have converged on sequential recombination
jet algorithms, methods to study jet substructure, and
grooming techniques to provide robustness to pileup.

One compelling physics challenge is to search for highly
boosted standard model particles decaying hadronically.
For instance, if a hadronically decayingW boson is highly
boosted, then its decay products will merge into a single
fat jet with a characteristic substructure. Unfortunately,
there is a large background from jets produced by more
mundane QCD processes. For this reason, several jet
‘taggers’ and variables sensitive to jet substructure have
been proposed. Initially, this work was dominated by
techniques inspired by our intuition and knowledge of
QCD; however, more recently there has been a wave of
approaches that eschew this expert knowledge in favor of
machine learning techniques. In this paper, we present a
hybrid approach that leverages the structure of sequential
recombination jet algorithms and deep neural networks.

Recent progress in applying machine learning tech-
niques for jet physics has been built upon an analogy
between calorimeters and images [1–8]. These methods
take a variable-length set of 4-momenta and project them
into a fixed grid of ⌘�� towers or ‘pixels’ to produce a ‘jet
image’. The original jet classification problem, hence, re-
duces to an image classification problem, lending itself to
deep convolutional networks and other machine learning
algorithms. Despite their promising results, these models
su↵er from the fact that they have many free parameters

and that they require large amounts of data for train-
ing. More importantly, the projection of jets into images
also loses information, which impacts classification per-
formance. The most obvious way to address this issue is
to use a recurrent neural network to process a sequence
of 4-momenta as they are. However, it is not clear how
to order this sequence. While pT ordering is common in
many contexts [5], it does not capture important angular
information critical for understanding the subtle struc-
ture of jets.
In this work, we propose instead a solution for jet clas-

sification based on an analogy between QCD and natu-
ral languages, as inspired by several works from natural
language processing [9–14]. Much like a sentence is com-
posed of words following a syntactic structure organized
as a parse tree, a jet is also composed of 4-momenta fol-
lowing a structure dictated by QCD and organized via
the clustering history of a sequential recombination jet
algorithm. More specifically, our approach uses ‘recur-
sive’ networks where the topology of the network is given
by the clustering history of a sequential recombination
jet algorithm, which varies on an event-by-event basis.
This event-by-event adaptive structure can be contrasted
with the ‘recurrent’ networks that operate purely on se-
quences (see e.g., [15]). The network is therefore given
the 4-momenta without any loss of information, in a way
that also captures substructures, as motivated by physi-
cal theory.
It is convenient to think of the recursive neural net-

work as providing a ‘jet embedding’, which maps a set
of 4-momenta into Rq. This embedding has fixed length
and can be fed into a subsequent network used for clas-
sification or regression. Thus the procedure can be used
for jet tagging or estimating parameters that character-
ize the jet, such as the masses of resonances buried inside
the jet. Importantly, the embedding and the subsequent
network can be trained jointly so that the embedding is
optimized for the task at hand.
Extending the natural language analogy paragraphs of

text are sequence of sentences, just as event are sequence
of jets. In particular, we propose to embed the full par-
ticle content of an event by feeding a sequence of jet-
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Classification without labels:

Learning from mixed samples in high energy physics

Eric M. Metodiev,a Benjamin Nachman,b and Jesse Thalera
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Abstract: Modern machine learning techniques can be used to construct powerful models

for di�cult collider physics problems. In many applications, however, these models are trained

on imperfect simulations due to a lack of truth-level information in the data, which risks the

model learning artifacts of the simulation. In this paper, we introduce the paradigm of

classification without labels (CWoLa) in which a classifier is trained to distinguish statistical

mixtures of classes, which are common in collider physics. Crucially, neither individual labels

nor class proportions are required, yet we prove that the optimal classifier in the CWoLa

paradigm is also the optimal classifier in the traditional fully-supervised case where all label

information is available. After demonstrating the power of this method in an analytical toy

example, we consider a realistic benchmark for collider physics: distinguishing quark- versus

gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can

be applied to any classification problem where labels or class proportions are unknown or

simulations are unreliable, but statistical mixtures of the classes are available.
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A selection of some other ideas I wanted to highlight 

Prepared for submission to JHEP

How Much Information is in a Jet?

Kaustuv Datta and Andrew Larkoski

Physics Department, Reed College, Portland, OR 97202, USA

E-mail: dattak@reed.edu, larkoski@reed.edu

Abstract: Machine learning techniques are increasingly being applied toward data analyses

at the Large Hadron Collider, especially with applications for discrimination of jets with di↵er-

ent originating particles. Previous studies of the power of machine learning to jet physics have

typically employed image recognition, natural language processing, or other algorithms that

have been extensively developed in computer science. While these studies have demonstrated

impressive discrimination power, often exceeding that of widely-used observables, they have

been formulated in a non-constructive manner and it is not clear what additional information

the machines are learning. In this paper, we study machine learning for jet physics construc-

tively, expressing all of the information in a jet onto sets of observables that completely and

minimally span N -body phase space. For concreteness, we study the application of machine

learning for discrimination of boosted, hadronic decays of Z bosons from jets initiated by QCD

processes. Our results demonstrate that the information in a jet that is useful for discrimina-

tion power of QCD jets from Z bosons is saturated by only considering observables that are

sensitive to 4-body (8 dimensional) phase space.
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Decorrelated Jet Substructure Tagging using Adversarial Neural Networks

Chase Shimmin
Department of Physics and Astronomy, UC Irvine, Irvine, CA 92627 and

Department of Physics, Yale University, New Haven, CT

Peter Sadowski and Pierre Baldi
Department of Computer Science, UC Irvine, Irvine, CA 92627

Edison Weik and Daniel Whiteson
Department of Physics and Astronomy, UC Irvine, Irvine, CA 92627

Edward Goul
Department of Physics, MIT, Cambridge, MA 02139

Andreas Søgaard
Department of Physics and Astronomy, University of Edinburgh, Edinburgh UK

(Dated: March 13, 2017)

We describe a strategy for constructing a neural network jet substructure tagger which powerfully
discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This
reduces the impact of systematic uncertainties in background modeling while enhancing signal purity,
resulting in improved discovery significance relative to existing taggers. The network is trained using
an adversarial strategy, resulting in a tagger that learns to balance classification accuracy with
decorrelation. As a benchmark scenario, we consider the case where large-radius jets originating
from a boosted resonance decay are discriminated from a background of nonresonant quark and
gluon jets. We show that in the presence of systematic uncertainties on the background rate, our
adversarially-trained, decorrelated tagger considerably outperforms a conventionally trained neural
network, despite having a slightly worse signal-background separation power. We generalize the
adversarial training technique to include a parametric dependence on the signal hypothesis, training
a single network that provides optimized, interpolatable decorrelated jet tagging across a continuous
range of hypothetical resonance masses, after training on discrete choices of the signal mass.

I. INTRODUCTION

The enormous center-of-mass energy of the Large
Hadron Collider (LHC) enables the production of
particles at such extreme velocities that the decay
products of even massive particles can become col-
limated. Rather than producing distinct deposits of
energy in the calorimeter, hadronic decay products
of such boosted objects can overlap, creating a sin-
gle large jet. Distinguishing between jets originat-
ing from a single particle (such as a quark or gluon),
and those which contain two or three hadronic decay
products, is known as jet tagging, and has become
an essential component of searches for new physics
at the LHC [1–5].

However, optimizing the LHC discovery potential
requires balancing the competing constraints of sig-
nal discrimination and systematic uncertainties. We
consider the case posed in Ref. [6] in which a spec-
trum of jet masses is examined for the presence of a
signal-like resonance peak. The background is dom-

inated by QCD jets, while the hypothetical signal is
produced via the hadronic decay of a boosted reso-
nance.

On one hand, there has been intense theoretical
work to develop jet substructure tagging tools [7, 8]
with powerful discrimination between these types of
jets. On the other hand, the processes that pro-
duce backgrounds to these searches are often not
well understood or are poorly modeled by simula-
tion tools. As a result, experiments in practice rely
on the assumption of a smooth background spectrum
which can be interpolated under a signal peak from
sidebands. Unfortunately, the jet-tagging quanti-
ties may be correlated with jet mass, resulting in
a distortion of the background shape [9], leading
to systematic uncertainties which cannot be sim-
ply characterized or controlled. The desire for op-
timal discrimination and reduced sensitivity to sys-
tematic uncertainties are naturally at tension with
each other.

One solution, Designing Decorrelated Taggers
(DDT) [9], uses a simple parametric function to con-
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Variable length inputs for jet substructure

A cute paper that had the network 
learn the Minkowski metric

SciPost Physics Submission

Deep-learned Top Tagging with a Lorentz Layer

Anja Butter1, Gregor Kasieczka2, Tilman Plehn1, and Michael Russell1,3

1 Institut für Theoretische Physik, Universität Heidelberg, Germany
2 Institute for Particle Physics, ETH Zürich, Switzerland

3 School of Physics and Astronomy, University of Glasgow, Scotland
plehn@uni-heidelberg.de

January 17, 2018

Abstract

We introduce a new and highly e�cient tagger for hadronically decaying top
quarks, based on a deep neural network working with Lorentz vectors and the
Minkowski metric. With its novel machine learning setup and architecture it
allows us to identify boosted top quarks not only from calorimeter towers, but
also including tracking information. We show how the performance of our tagger
compares with QCD-inspired and image-recognition approaches and find that it
significantly increases the performance for strongly boosted top quarks.

Content

1 Introduction 2

2 Tagger 2
2.1 Combination layer 3
2.2 Lorentz layer 4

3 Performance 5
3.1 Calorimeter 6
3.2 Learning the Minkowski metric 7
3.3 Calorimeter and tracking 7

4 Conclusions 8

References 9
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Weakly supervised learning (CWoLa)

Building a complete analytic basis 
for the jet

Decorrelations! (see next slide)



EXAMPLE: ML AND CORRELATIONS

A concrete example to think about: Higgs tagging

 35

Conv1D + GRU network topology
• 27 high-level (double-b) features + 60×8 track features + 

5×2 secondary vertex features per Higgs-candidate jet  
• Conv1D with kernel size 1 = Time-distributed dense = apply 

same dense network to each PF candidate / track / SV 
• GRU = Gated Recurrent Unit = Recurrent network to reduce 

dimensionality of output from Conv1D layers  
(60×32, 5×32) → (50, 50)

SV 
features

Output  
 

Higgs 
QCD

8

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

track 
features

GRU  
(50 units, 

dropout = 0.1)

GRU  
(50 units, 

dropout = 0.1)

Double-b 
features

Fully 
connected 

 
(1 layer,  

100 units,  
dropout = 0.1)

(60, 32)

(5, 32)

(50)(60, 8)

(5, 2)

(27)

(50)

(100)

quark or 

Train a network to distinguish a Higgs(bb) jet from a 
quark/gluon jet using secondary vertex information


On the face of it, this is not a substructure tagger, only 
using tracking information 

Training done

on AWS P2 

GPU resources

Javier Duarte (FNAL),  
Caterina Vernieri (FNAL)



GPU MONITORING  36Burt Holzmann, FNAL



GPU MONITORING  37



EXAMPLE: ML AND CORRELATIONS  38Performance  
(double-b + PF + track + SV)

13

~150% improvement in  
H(bb) tagging efficiency for 

QCD mistag rate of 10-2

large mass 
sculpting!

Performance  
(double-b + PF + track + SV)

13

~150% improvement in  
H(bb) tagging efficiency for 

QCD mistag rate of 10-2

large mass 
sculpting!

Old BDT based on 
expert features

New NN based on 
expert + raw features

Big improvement in the 
performance coming from a 

new neural network!


But…umm…

Crud, it looks like the tagger 
learned the Higgs jet mass!


QCD background is 
sculpted to look like the 

Higgs jet signal  



EXAMPLE: ML AND CORRELATIONS

How to decorrelate the secondary vertex tagger from the mass in 
some machine learning algorithm? 

Some early work into principle component analysis   
Pointed to a first paper in physics using Adversarial Networks 
Another approach here using modified loss functions (J. Duarte et al) 

Categorical cross-entropy loss function with additional mass-binned Kullback-Leibler 
term for mass sculpting

 39

Performance with mass sculpting penalty   
(double-b + track + SV)

11

~100% improvement in  
H(bb) tagging efficiency for 

QCD mistag rate of 10-2

reduced mass 
sculpting

Performance with mass sculpting penalty   
(double-b + track + SV)

11

~100% improvement in  
H(bb) tagging efficiency for 

QCD mistag rate of 10-2

reduced mass 
sculpting



LESSONS LEARNED

Did my ML algorithm learn too much? 
Learning specific modeling differences in the MC  
Sculpting backgrounds to look like signal 
Throwing away interesting anomalous signals 

Did my ML algorithm learn enough? 
Did I give it enough information to learn all the physics?  

What did my ML algorithm learn?  
Always a tricky discussion 

 40
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IS MY NN SCULPTING THE NEUTRINO ENERGY?   
OTHER HIDDEN DEPENDENCIES?

IS GRANULARITY SUFFICIENT FOR THE IMAGE?  
WHAT ABOUT OTHER ORTHOGONAL INFO, LIKE TIME?

THROWING OUT ANY EXOTIC INTERESTING PHYSICS SIGNATURES?  



LESSONS LEARNED  42

My personal take away: 
Provided it’s well-understood,  

we should use the best (performance & speed) algorithm 
A good way to develop understanding is to have a suite of performant 

expert features (to understand complete information content and 
correlations); we are physicists after all

Did my ML algorithm learn too much? 
Learning specific modeling differences in the MC  
Sculpting backgrounds to look like signal 
Throwing away interesting anomalous signals 

Did my ML algorithm learn enough? 
Did I give it enough information to learn all the physics?  

What did my ML algorithm learn?  
Always a tricky discussion



�43

the fast and the furious 
(the reason I personally like machine learning)



COMPUTING ARCHITECTURES  44

Source: Bob Broderson, Berkeley Wireless group

GPUs

FPGAs

* GPUs still best option for training

* FPGAs generally much more power efficient

ASICs

CPUs



THE TRIGGER @ ATLAS AND CMS
Goal:  
reduce event rate from 40MHz to 500 Hz 

How: multi-tier system 
custom hardware (“L1”) 

latency, O(μs) 
rate in/out: 40 MHz / 100 KHz 

computing farm (“HLT”) 
latency, O(100 ms) 
rate in/out: 100 KHz / 500 Hz 

n.b. all numbers approximate 

For HL-LHC upgrade: latency and output rates go up ~5
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Latencies necessitate  
all-FPGA design!



MORE OPPORTUNITIES

In the era of big science, more sophisticated triggers and DAQ 
systems are required 

Even in traditional “low” rate experiments 
Other LHC applications, like LHCb, and ATLAS/CMS HLT and cosmic 
and intensity frontier experiments

 46



MACHINE LEARNING & FPGAS

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 
Some early adaptions of ML techniques in trigger [1] 
FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

 47

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/



ML IN FPGAS?  48

FPGA

How many resources? DSPs, LUTs, FFs? 
Can we fit in the latency requirements?



PROJECT OVERVIEW  49

-

	

/

hls  4  ml

hls4ml

HLS  4  ML



SNEAK PEAK  50

Network Substructure (uncompressed) Substructure (compressed)
AUC / Expected AUC 99.68% 99.55%

Parameters 4389 1338
Compression rate - 3.3⇥

DSP48E 3329 954
Logic (LUT + FF) 263,234 88,797

Latency 75 ns 75 ns

Table 2: A summary of the vital statistics and HLS resource estimates of the uncompressed and
compressed jet substructure tagging model with a network precision of fixed-point <16,6> and fully
pipelined with clock frequency of 200 MHz synthesized on a Xilinx Kintex Ultrascale+ FPGA.

Figure 12: DSP usage in the compressed 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

In Fig. 12, we observe that the reuse factor controls the number of times a reuse multiplier is
used in the neural network. As the reuse factor increases, we are able to control the DSP usage
proportionally to the reuse factor. The DSP usage (reuse = 3) scales as the DSP usage (reuse =
1) divided by 3. The DSP resource usage has jumps as a function of the network precision, and this
is consistent for all values of reuse. In the figure, we also indicate the maximum number of DSPs
available in this particular Xilinx Kintex Ultrascale+ FPGA. In Fig. 13, the FF (left) and LUT (right)
usage is shown. For both the FF and the LUTs, the resource usage relative to the FGPA’s capacity is
small compared to that of the DSPs. Additionally, we observe jumps in FF usage at the DSP precision
limits. While this is an interesting feature, we find that these jumps are removed when performing the
implementation (discussed in Sec. 3.3).

Next, we examine the aspects of the firmware implemenetation related to timing and throughput.

– 17 –

FERMILAB-PUB-18-089-E
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Fast inference of deep neural networks in FPGAs for

particle physics

Javier Duarte
a

, Song Han
b,c

, Philip Harris
c

, Sergo Jindariani
a

, Edward Kreinar
d

, Benjamin

Kreis
a

, Jennifer Ngadiuba
e

, Maurizio Pierini
e

, Nhan Tran
a

, Zhenbin Wu
f

aFermi National Accelerator Laboratory, Batavia, IL 60510, USA
bStanford University, Menlo Park, CA 94025, USA
cMassachusetts Institute of Technology, Cambridge, MA 02139, USA
dHawkEye360, Herndon, VA 20170, USA
eEuropean Center for Nuclear Research, Geneva, Switzerland
f University of Illinois at Chicago, Chicago, IL 60607, USA

E-mail: ntran@fnal.gov

A�������: Machine learning methods are ubiquitous in LHC physics and particle physics as a whole.
However, exploration of the use of such techniques in low-latency, low-power FPGA hardware has
only just begun. There is great potential to improve the performance of FPGA-based trigger and data
acquisition (DAQ) systems. These systems have extremely low, sub-microsecond latency requirements
that are unique to particle physics. We present a case study for neural network inference in FPGAs.
Our study takes jet substructure, a field familiar with machine learning, as an example, but the lessons
are far-reaching. We develop a package based on High-Level Synthesis (HLS) called hls4ml to build
machine learning models in FPGA firmware. The use of HLS increases accessibility across a broad
user community and allows for a drastic decrease in firmware development time. We map out FPGA
resource usage and latency versus neural network hyperparameters to identify the problems in particle
physics that would benefit from performing neural network inference with FPGAs.

MP7

CTP7



hls4ml
We introduce a software/firmware package, hls4ml 

Automated translation of neural networks into firmware using HLS 
Case study present with jet substructure in L1 trigger 

Tunable configuration for a broad range use cases 

More info here: 
https://hls-fpga-machine-learning.github.io/hls4ml/ 
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hls  4  ml

hls4ml

HLS  4  ML
Look out for research techniques seminar by  

Javier Duarte (FNAL) on April 24th for many more details!

https://hls-fpga-machine-learning.github.io/hls4ml/
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Dennard 
Scaling


fails

Moore’s

Law


continues



MOORE’S LAW AND DENNARD SCALING  52

Dennard 
Scaling


fails

Moore’s

Law


continues

Single threaded performance not improving

Circa ~2005: “The Era of Multicore” 
→ Today: Transition to the “Era of Specialization”?  (c.f. Doug Burger)
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2xCPU

Observations

38

accelerating
co-processor
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2xCPU

Observations

38
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Fig. 1. (a) Decoupled Programmable Hardware Plane, (b) Server + FPGA schematic.

tion hardware is tightly coupled with the datacenter network—
placing a layer of FPGAs between the servers’ NICs and
the Ethernet network switches. Figure 1b shows how the
accelerator fits into a host server. All network traffic is routed
through the FPGA, allowing it to accelerate high-bandwidth
network flows. An independent PCIe connection to the host
CPUs is also provided, allowing the FPGA to be used as a local
compute accelerator. The standard network switch and topol-
ogy removes the impact of failures on neighboring servers,
removes the need for non-standard cabling, and eliminates the
need to track the physical location of machines in each rack.

While placing FPGAs as a network-side “bump-in-the-wire”
solves many of the shortcomings of the torus topology, much
more is possible. By enabling the FPGAs to generate and
consume their own networking packets independent of the
hosts, each and every FPGA in the datacenter can reach
every other one (at a scale of hundreds of thousands) in
a small number of microseconds, without any intervening
software. This capability allows hosts to use remote FPGAs for
acceleration with low latency, improving the economics of the
accelerator deployment, as hosts running services that do not
use their local FPGAs can donate them to a global pool and
extract value which would otherwise be stranded. Moreover,
this design choice essentially turns the distributed FPGA
resources into an independent computer in the datacenter,
at the same scale as the servers, that physically shares the
network wires with software. Figure 1a shows a logical view
of this plane of computation.

This model offers significant flexibility. From the local
perspective, the FPGA is used as a compute or a network
accelerator. From the global perspective, the FPGAs can be
managed as a large-scale pool of resources, with acceleration

services mapped to remote FPGA resources. Ideally, servers
not using all of their local FPGA resources can donate
those resources to the global pool, while servers that need
additional resources can request the available resources on
remote servers. Failing nodes are removed from the pool
with replacements quickly added. As demand for a service
grows or shrinks, a global manager grows or shrinks the pools
correspondingly. Services are thus freed from having a fixed
ratio of CPU cores per FPGAs, and can instead allocate (or
purchase, in the case of IaaS) only the resources of each type
needed.

Space limitations prevent a complete description of the
management policies and mechanisms for the global resource
manager. Instead, this paper focuses first on the hardware
architecture necessary to treat remote FPGAs as available
resources for global acceleration pools. We describe the com-
munication protocols and mechanisms that allow nodes in
a remote acceleration service to connect, including a proto-
col called LTL (Lightweight Transport Layer) that supports
lightweight connections between pairs of FPGAs, with mostly
lossless transport and extremely low latency (small numbers
of microseconds). This protocol makes the datacenter-scale
remote FPGA resources appear closer than either a single local
SSD access or the time to get through the host’s networking
stack. Then, we describe an evaluation system of 5,760 servers
which we built and deployed as a precursor to hyperscale
production deployment. We measure the performance charac-
teristics of the system, using web search and network flow
encryption as examples. We show that significant gains in
efficiency are possible, and that this new architecture enables a
much broader and more robust architecture for the acceleration

A. Caulfield, et al., Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (2016). 
https://www.microsoft.com/en-us/research/publication/configurable-cloud-acceleration/ 

Microsoft Catapult

https://www.microsoft.com/en-us/research/publication/configurable-cloud-acceleration/
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tion hardware is tightly coupled with the datacenter network—
placing a layer of FPGAs between the servers’ NICs and
the Ethernet network switches. Figure 1b shows how the
accelerator fits into a host server. All network traffic is routed
through the FPGA, allowing it to accelerate high-bandwidth
network flows. An independent PCIe connection to the host
CPUs is also provided, allowing the FPGA to be used as a local
compute accelerator. The standard network switch and topol-
ogy removes the impact of failures on neighboring servers,
removes the need for non-standard cabling, and eliminates the
need to track the physical location of machines in each rack.

While placing FPGAs as a network-side “bump-in-the-wire”
solves many of the shortcomings of the torus topology, much
more is possible. By enabling the FPGAs to generate and
consume their own networking packets independent of the
hosts, each and every FPGA in the datacenter can reach
every other one (at a scale of hundreds of thousands) in
a small number of microseconds, without any intervening
software. This capability allows hosts to use remote FPGAs for
acceleration with low latency, improving the economics of the
accelerator deployment, as hosts running services that do not
use their local FPGAs can donate them to a global pool and
extract value which would otherwise be stranded. Moreover,
this design choice essentially turns the distributed FPGA
resources into an independent computer in the datacenter,
at the same scale as the servers, that physically shares the
network wires with software. Figure 1a shows a logical view
of this plane of computation.

This model offers significant flexibility. From the local
perspective, the FPGA is used as a compute or a network
accelerator. From the global perspective, the FPGAs can be
managed as a large-scale pool of resources, with acceleration

services mapped to remote FPGA resources. Ideally, servers
not using all of their local FPGA resources can donate
those resources to the global pool, while servers that need
additional resources can request the available resources on
remote servers. Failing nodes are removed from the pool
with replacements quickly added. As demand for a service
grows or shrinks, a global manager grows or shrinks the pools
correspondingly. Services are thus freed from having a fixed
ratio of CPU cores per FPGAs, and can instead allocate (or
purchase, in the case of IaaS) only the resources of each type
needed.

Space limitations prevent a complete description of the
management policies and mechanisms for the global resource
manager. Instead, this paper focuses first on the hardware
architecture necessary to treat remote FPGAs as available
resources for global acceleration pools. We describe the com-
munication protocols and mechanisms that allow nodes in
a remote acceleration service to connect, including a proto-
col called LTL (Lightweight Transport Layer) that supports
lightweight connections between pairs of FPGAs, with mostly
lossless transport and extremely low latency (small numbers
of microseconds). This protocol makes the datacenter-scale
remote FPGA resources appear closer than either a single local
SSD access or the time to get through the host’s networking
stack. Then, we describe an evaluation system of 5,760 servers
which we built and deployed as a precursor to hyperscale
production deployment. We measure the performance charac-
teristics of the system, using web search and network flow
encryption as examples. We show that significant gains in
efficiency are possible, and that this new architecture enables a
much broader and more robust architecture for the acceleration

A. Caulfield, et al., Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (2016). 
https://www.microsoft.com/en-us/research/publication/configurable-cloud-acceleration/ 

Microsoft Catapult

Translation of all of wikipedia in 0.1 seconds!

~O(100) times faster than CPU 

It already exists!  

One example: Microsoft catapult

https://www.microsoft.com/en-us/research/publication/configurable-cloud-acceleration/
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CPU

8 GB

128 MB

8 lanes, 8 Gbps per lane

Resources are available for 
development already!
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^



ML BABEL FISH

Large gains from hardware accelerating co-processors 
Industry trending towards specialized computing paradigms

 60

Option 1

re-write physics algorithms for 
new hardware

Language: OpenCL, OpenMP, HLS, 
…?

Hardware: FPGA, GPU

Option 2

re-cast physics problem as a 
machine learning problem

Language: C++, Python
(TensorFlow, PyTorch,…)

Hardware: FPGA, GPU, ASIC

Why (Deep) Machine Learning?  
a common language for solving problems  

which can universally be expressed on optimized computing hardware 
and follow industry trends



ML BABEL FISH

Large gains from hardware accelerating co-processors 
Industry trending towards specialized computing paradigms
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Option 1

re-write physics algorithms for 
new hardware

Language: OpenCL, OpenMP, HLS, 
…?

Hardware: FPGA, GPU

Option 2

re-cast physics problem as a 
machine learning problem

Language: C++, Python
(TensorFlow, PyTorch,…)

Hardware: FPGA, GPU, ASIC

Why (Deep) Machine Learning?  
a common language for solving problems  

which can universally be expressed on optimized computing hardware 
and follow industry trendsLook out for ML seminar by Andrew Putnam (Microsoft Research) 

on May 14/15 on FPGA datacenters and MS Catapult!
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Summary



SUMMARY

Jet substructure is a rapidly developing field  
First seminal papers in 2008!  
More recently, a fast adopter of machine learning algorithms 

A tractable and interesting problem 

Jet substructure not well-modeled in MCs 
Use of SM standard candles and decorrelation techniques are key to 
demonstrate understanding of observables and ultimately to use in 
analysis 

Many machine learning applications have been developed to 
improve jet substructure techniques 

Same challenges and principles apply to ML algorithms and physics 
algorithms

 63



OUTLOOK

Why machine learning?   

Performance?  
O(1) improvements over physics algorithms and BDTs 

The ML Babel Fish: many problems can be cast as machine learning 
problems 

Once you cast your problem as a machine learning problem, you can 
use specialized hardware to accelerate your solution 
Industry is not developing FPGAs and ASICs for Higgs jet substructure tagging and CCQE 
identification in LAr TPCs 

O(100) improvements in computing and reconstruction! 
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